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The critical limit of lattice gauge theory obtained previously, and which contains a parameter
with dimension of (mass)*, reflecting the boundary of the fundamental modular region, is shown
to be renormalizable. The proof relies on BRS symmetry, It is also proven that the exact
propagator of the Fermi ghost possesses a 1/(g%)? singularity at g = 0. The relation of these
results to confinement, the gluon condensate, and the fundamental modular region of gauge
theory is discussed briefly.

1. Introduction

Wilson’s lattice gauge theory provides a regularized form of euclidean gauge
theory which is invariant under a local gauge group G. This group is compact, so
lattice gauge theory has the celebrated property that there is no need to fix a
gauge, for example in numerical simulations. However precisely because of this
local gauge invariance, the Wilson ensemble defines a measure on the quotient
space, U /G, of the space of configurations modulo gauge transformations, which
is the physical configuration space. It would not be surprising if this space played
an important role in the critical or continuum limit of lattice gauge theory.

Since the fundamental work of Gribov [1], it is known that this space is bounded
by a horizon. It is frequently thought that this horizon cannot be accounted for in
renormalizable perturbation theory. However in recent studies of continuum gauge
theory [2] and the critical limit of lattice gauge theory [3], the constraint that the
functional integral lie inside this horizon was implemented by a Boltzmann factor
exp(—vH). (The explicit formula is given in eq. (2.1) below.) Here “the horizon
function”, H(A), is a function of the gauge connection A, and y is a new
parameter, with dimension of (mass)®. Its value is not free, but is fixed, y = y(g),
by requiring that the expectation value of H have a known value F, determined by
the location of the horizon,

g>(H)=F. (1.1)
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One may invert this relation and obtain g = g(y), which is a form of the familiar
dimensional transmutation whereby the running coupling constant is substituted
for the expansion parameter g after a perturbative calculation.

A close analogy exists here between lattice gauge theory and a classical
statistical mechanical system with hamiltonian H and energy E, which is equiva-
lent to a Boltzmann distribution at a temperature T determined by (H) =E.

It was observed in refs. [2,3] that the perturbative expansion of the critical or
continuum limit of lattice gauge theory, defined in eq. (2.1) below, in powers of the
coupling constant g at fixed y was renormalizable by power counting. In the
present work, we shall show that this theory is indeed perturbatively renormaliz-
able, and that the ‘“horizon condition”, eq. (1.1), also renormalizes, in the sense
that it gives a finite relation between renormalized quantities, which is moreover
compatible with the perturbative renormalization group. Renormalizability should
not be a surprise, because the property of being renormalizable is a consequence
of the insensitivity of the critical limit to short distance structure. On the other
hand, it is a valuable consistency check on the hypotheses of ref. [3], by which the
critical limit of lattice gauge theory was derived, that renormalizability does hold.
Also in the present work, some specific consequences of these hypotheses are
verified, as is explained in the concluding section, where various physical implica-
tions are also discussed.

In zeroth order perturbation theory, the gluon propagator is given by k2[(k2) +
Nvy*]71, for SU(N) gauge theory. There is no pole at k=0, so the gluon is
destabilized by the horizon. This propagator was originally found by Gribov [1],
and was also obtained in ref. [4] as a non-perturbative solution of the Schwinger—
Dyson equations without a horizon. The relation of this type of propagator to
confinement is discussed [3-5]. We refer to ref. [3] for a detailed discussion of the
horizon in lattice gauge theory and for further references.

In sect. 2 the non-local Boltzmann factor is expressed as an integral over
auxiliary or ghost fields with a local action. In sect. 3 the BRS symmetry of the
dimension-4 part of the local action is exhibited. The remaining, lower-dimen-
sional, pieces of the action are treated in sect. 4 by the method of local sources,
with local sources also introduced for the BRS transforms of these remaining
pieces. In sect. 5 a theorem is derived which gives the explicit dependence of the
effective action on the ghost fields. In sect. 7 the theory with y arbitrary is shown
to be renormalizable by solving the standard cohomology problem, and in sect. 8
the horizon condition is shown to renormalize. In sect. 9 the energy—momentum
tensor 7,, is derived, and it is explained why the gluon condensate (T,,> may be
perturbatively calculable in the present scheme. In sect. 10 we shall show that the
exact propagator of the fermi ghost field has a 1/(g?)? singularity at k£ = 0. This
comes from an exact cancellation of the tree-level contribution to the inverse
propagator by the quantum corrections, when the horizon condition is satisfied. In
the concluding sect. 11, we briefly discuss some physical implications of this result
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for confinement, what it tells us about which configurations dominate the func-
tional integral, and to what extent the hypotheses of ref. [3] are verified.

2. Local action

It was found in ref. [2] that the partition function of a continuum non-abelian
gauge theory may be written in the form

Z= [dA exp(~Syy—yH)3(3- 4) det(M), (2.1)

and in ref. [3] a lattice-regularized analogy of this expression was obtained. Here
Sym is the Yang-Mills action, and M = M(A) is the Faddeev-Popov operator,
defined by

M%pf = —9- (Dac(Pc) — _a#[(b\acau +fabcg14#b)¢c] , (22)

where u is a Lorentz index, ¢ is any field that transforms according to the adjoint
representation of the structure group, and f%°° are the structure constants of a
semi-simple Lie group which will be taken to be SU(N). Apart from the term yH
in the action, formula (2.1) is the familiar Faddeev—Popov partition function. The
horizon function H is defined by

H=(A,M™14) = [dPx ford, b(M~1) " f4c4,¢ = [dPx h(x), (23)

where repeated indices are summed over, and A(x) is the horizon function per unit
volume. Because of translation invariance, the horizon condition (1.1) which
determines y reads

g2 (hy=f=(N*-1)D. (2.4)

Here (N2 — 1) is the dimension of the adjoint representation of SU(N), and D is
the dimension of euclidean space-time, so f is the number components of A#b,
which is also the number of degrees of freedom per lattice site. The coefficient g2
occurs because the classical connection has been written gA. Formula (2.1) is
understood to be defined by its power series in g, calculated by gaussian quadra-
ture with dimensional regularization.

[We give a brief word about how this expression for the critical limit is derived.
Although it was originally obtained in continuum quantum field theory [2], it must
be said that quantization of a gauge field in the continuum is not really a
well-defined problem mathematically. Wilson’s lattice gauge theory provides a
satisfactory quantization and gauge-invariant regularization. To obtain its contin-
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uum limit, which is its critical limit, a gauge must be chosen which makes all link
variables as close to unity as possible. To do this in an optimal way, equitably over
the whole lattice, in ref. [3], the quantity

1[U]= ;[1 -N7' T(U,)],

was taken as a measure of the deviation of the link variables from unity in the
configuration U. Here the sum extends over all links L of the lattice, and U, is the
variable (an element- of the SU(N) group) associated to the link L in the
configuration U. The continuum analog of this expression is the Hilbert norm of
the connection A4, I[A]= [dPx| A(x)| 2. The gauge was chosen which makes this
quantity an absolute minimum. In this gauge, the function

FU[g] EI[Ug]’

where U? is the gauge transform of the configuration U by the local gauge
transformation g, is an absolute minimum at g(x) =1 with respect to all local
gauge transformations g =g(x). At a minimum this function is stationary, and its
second variation is positive. These properties imply that -4 =0, and that the
Faddeev-Popov operator M(A4) is positive M(A) > 0. The first condition is known
as the Landau gauge condition, and the second defines the Gribov region. We
refer the reader to ref. [3] for details on how the Wilson action in this gauge leads
to the partition function (2.1). Although, as mentioned, the derivation requires
hypotheses, they may at least in principle be verified by numerical simulation and
numerical gauge fixing on the lattice, and some of their consequences are verified
in the present work, as is discussed in sect. 11.]

In order to prove renormalizability of the theory defined by the partition
function (2.1), we rewrite it in terms of a local action by integrating over auxiliary
fields. Because the indices p and ¢ are mute in the horizon function (2.3) it is
convenient to introduce the notation

Af=A, =f"Ar (2.5a)

Here we have written the single index

i=(u,c) (2.5b)

for the pair of mute indices, and i takes on f=(N2-— 1D values. For the
Boltzmann factor, we have by gaussian quadrature,

exp[ —y(A4, M~4)] = [det(M)]ffd<p de*

Xexp[ —(¢*, Mo) —v"2(A4, o —9*)|. (2.6)

Here ¢ = (¢, +ip,)/V2 and ¢* = (¢, —ip,)/V2 are a pair complex fields with
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components ¢ =¢, “(x) where u is a Lorentz index and a and c are in the
adjoint representation of the SU(N) group, and similarly for ¢*, and

(A4, 9= ¢*) = [dPx AP (9~ ¢*) 7. 2.7

(¢*, Mp) = [dPx ¢ * *Me2g? (28)

The coefficient [det(M)) in eq. (2.6) appears because the mute indices in the last
expression take on f values. To obtain a local expression, we write [det{M)]’ by
means of gaussian quadrature over pairs w and w* of Grassmann fields

exp[ —y(A4, M~ '4)]
= /d(p do* dw de* exp[—(qo*, Mo) + (0*, M) —y'/%(4, ¢ —(p*)]. (2.9)

Here w and «* are independent Grassmann variables that have the same
components as ¢ and ¢*, namely 0/ = w, . and w* =w*, ° Finally we use the
standard representation for the Faddeev—-Popov measure and obtain the desired
local expression for the partition function (2.1), namely

zZ= [dA dC dC* dA dg de* dw dw* exp(-S,), (2.10)

where
Sy =Syw= (1, 0:4) = (C*, MC) + (¢*, Mg) — (w*, M) +7"/%(4, ¢ — ¢*).
(2.11)

Here C¢ and C*“ are the usual pair of Faddeev—-Popov Grassmann ghosts, and A
is an imaginary Lagrange multiplier which enforces the constraint 3 -4 =0, charac-
teristic of the Landau gauge. (We generally follow the notation of ref. [6].) In terms
of these variables, the horizon condition reads

g AN(x)pf(x))= —gX A (x)e*(x))=fy/> = (N~ 1)Dy'/%. (2.12)

3. BRS invariance

If one sets ¥ = 0, one should obtain a theory which is equivalent to the Faddeev
Popov theory. To verify this point, consider the local action (2.11), with y set to 0,

$:=8Sym—(2,3-4)—(C*, MC) + (¢*, Mp) — (0*, Mw). 3.1
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This action has a pleasant super-symmetry between the f pairs of Bose ghosts and
the f+ 1 pairs of Fermi ghosts which acts on their lower indices. It also enjoys
BRS invariance. To see this, let a BRS transformation be defined by

sA=DC, sC=—(g/2)CxC,

sC*¥=A, sA =0,
S =w, Sw=0,
sw*=¢*,  s5p*=0, (3.2)

which is nilpotent, s2=0. Let S, be the action defined by
SOESYM-f-s[—(C*,a'A)+(w*,Mcp)], (3.3)
which satisfies
58,=0. (3.4)

Since S, differs from Sy,, by an exact BRS transform, we know from general
arguments that for gauge-invariant observables it gives the same expectation values
as standard Faddeev—Popov theory, provided only that the theory defined by S, is
well defined, as we shall demonstrate. Keeping in mind that s anti-commutes with
Grassmann fields, and that A4 is buried in M = M(A4) = —3d- D(A), one finds

So=S84—(A,0-4) —(C*, MC) + (¢*, Mp) — (0*, Mw) —g(do*, (DC) X ¢).
(3.5)
This expression differs from the action §; above by the presence of the last term.

However, we may and shall transform the action §; into S, by a shift in the
variable

o'=0+M71gd- [(DC) X ¢], (3.6)

while keeping w™* fixed. Thus, after dropping the prime, the partition function
reads

Z = [dd exp[ =Sy~ v"2(4, ¢ — ¢¥)], (3.7)

where d® represents integration over all fields, as in eq. (2.10). The full action
which appears here is not BRS invariant. However the term proportional to y!'/2
which breaks it is only of dimension 2 instead of 4. We shall show, by introducing a
local source for it, that correlation functions with this composite field are renor-
malizable.
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It is sometimes thought, erroneously, that BRS invariance is a form of gauge
invariance, so some readers may conclude that the term in the action which
violates BRS invariance means that a horrible gauge-violating error was made. To
avoid possible confusion on this point, we emphasize that gauge invariance was in
fact lost (more precisely, it was fully exploited) when the gauge was fixed in an
optimal way, as described in the sect. 2. Moreover the theory with the parameter
v, whose renormalizability we wish to establish, does not represent a gauge theory
at all, except when v is assigned the value determined by the horizon condition,
and this value is known only after calculations in the more general theory. On the
other hand, BRS invariance is a new and useful symmetry that arises whenever a
S-function and its accompanying jacobian determinant are represented by integrals
over a larger set of Bose and Fermi variables. The BRS transformation increases
the fermion number by one, so it is defined only in the larger space. The BRS
transformation may be isomorphic to an infinitesimal gauge transformation in
some cases. The relevant issue is not whether the full action is BRS invariant but
whether it is renormalizable. We shall see that it is sufficient that the dimension-4
part of the action be BRS invariant. This allows unambiguous, renormalizable
calculations with local sources for lower-dimensional BRS-violating fields that may
be elementary or composite.

The action S, possesses a U(1) symmetry which corresponds to conservation of
ghost-fermion number. We assign ghost-fermion number 1 to the fields C and w,
and ghost-fermion number —1 to the fields C* and w*. All other fields are bose
fields with ghost-fermion number zero. The BRS operator defined in eq. (3.2)
increases the ghost-fermion number by unity, and is nilpotent. [The space of
functions of the fields, which is the sum of all spaces with fixed integer ghost-ferm-
ion number, is isomorphic to the space of differential forms, where the degree of
the form is the ghost-fermion number. A slight generalization is required, because
the starred ghost-fermion fields are assigned degree-1. Just as Cartan’s exterior
derivative increases the degree of forms by unity, the BRS operator s increases the
ghost fermion number by unity.] The action S, also possess a U(f) symmetry,
where f=(N?— 1)D, by which the fields ¢,, ¢*;, ,, and w*; are transformed on
their lower index i = (u, a) in an obvious way.

The two actions S, and S, differ by the vertex g(dw*, (DC) X ¢). This vertex
increases the C-number by unity and decreases the w-number by unity, whereas
the remainder of the action separately conserves the number of these Fermi ghost
fields. The important point about this new vertex is that it appears in the action
without its complex conjugate. Consequently, although the action does not con-
serve the C-number and w-number separately, it has the property that the
C-number is non-decreasing and the w-number is non-increasing. It follows that
the new vertex contributes precisely n times in matrix elements or correlation
functions where the C-number increases by n and the w* number decreases by n,
and not at all in matrix elements where »n is zero. Thus, for example, this vertex
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does not contribute at all to the horizon condition (2.10) in which »n is zero.
Moreover for the matrix elements in which # is zero, the actions S, and §; give
equal values. Matrix elements where » is negative vanish. We call this new vertex
the “C-ghost increasing vertex”.

Observe that the term (A4, ¢*) which appears in the action may be written

(A, ¢*) =35(A, 0*) - (DC, 0*). (3.8)

We eliminate the last term by a linear shift in the w variable (while w* is kept
constant), so that the partition function is given by

Z= [d® exp(=S,;) (3.9a)

Son =So+7v'2[(4, ¢) —s(4, 0*)], (3.9)

where S, is given in eq. (3.5). This shift in ¢ by a term proportional to w*C does
not affect expectation values of matrix elements in which these ghost numbers do
not change, as we have just discussed.

4. Sources for composite fields

The partition function (3.9) contains the BRS violating term of dimension 2. We
would like to treat it as in operator insertion in the BRS conserving theory.
However, a direct expansion in powers of this term would lead to infrared
divergences. For this reason it is convenient to introduce a local source for this
term, renormalize the ultraviolet divergences and resum. We follow here the
method by which the m?p? term is treated as an insertion into the massless ¢*
theory, as described in section 8.10 of ref. [6].

There is considerable freedom in the choice of local sources. We shall introduce
those local sources which will allow us to solve the equations of motion of the
ghost fields. Note that the term

71/2(/1, ¢) — 71/2dex (fabcAub‘Pp,,ca)(x)
which appears in the action may also be written
'yl/z(A, qD) - _g—l,yl/Zdex Duac¢u,ac(x)’ (4.1)

where the covariant derivative is defined in eq. (2.2), because the integral of an
ordinary derivative vanishes. We shall introduce a source Mm.“( x) for each compo-
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nent of (D, ¢;)*(x) = D,**¢£(x), and similarly a source N, *(x) for D,0*(x). We
also introduce sources U,*(x) and V,*(x) for the BRS transforms of these
quantities, s(D,¢)*(x) and s(D,w*)(x). Sources for De* and Dw will not
needed because they are closely related to sDw™ and sD¢. Note that M and I are
Bose fields, where N and U are Fermi fields, which have ghost number 1 and —1
respectively.

As is customary, we also introduce sources K and L for the composite BRS
transforms of the elementary fields 4 and C, namely for DC =s4 and for
—g/2C X C=sC. Thus we are led to consider an extended action S which
depends on all these local sources,

—S=—8,+ (K, DC) + (L, —g/2C X C)
+(M, D¢) + (Dw*, N) + (U, sDg) + (sDw*, V),  (4.2)

where S, is the BRS-invariant action given in eq. (3.5). We shall show by the
technique of local sources that correlation functions with insertions of such fields
are renormalizable. The original action S, given in eq. (3.9) is regained when the
local sources are assigned the physical values

Mph,uvba(x) = _Vph,;wba(x) = ‘yl/zg_lap.uaba’ (43)
Kpp=Ly=Ny=U,=0. (4.4)

Here we have restored the notation (v, b) =i, and written M, ,,,"(x) instead of

M, ,A(x), and similarly for V.

5. Solution of the ghost field equations of motion

To obtain the generating functional of correlation functions, we also introduce
local sources for all the elementary fields,

Z=exp W= [d® exp(-3), (5.1)
where
—3=-S+(J, A) +(n*, C)+(C*, 1) + (I, A)
+(p*, @) + (0%, p) + (0%, 0) + (0%, 7), (5:2)

and S is given in eq. (4.2). Renormalization is most simply described in terms of
the effective action I' which is the Legendre transform of the generating func-
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tional of connected correlation functions W=1In Z,
Ir'(4,C,C* A, 0, 0%, 0, 0*) + W(J,n,m%, 1, p, p*, 0, 0*)
=(J, A) +(n*, C) +(C*, ) + (L, A) +(p*, ¢) +(¢%, p) + (0¥, @)
+(w*, o), (5.3)

where
A=8W/8J, J=8I'/6A
C=8W/én*, n*=-6I'/8C,
C*=—-6W/én, n=86I/8C*,

A =8W/sl, [=8I/81,
¢ =08W/dp*,  p*=06I/d¢,
o*=6W/8p, p=086I'/8¢%,

w=8W/sc*, o*=-06I/bw,
w* = —8W/sc, o=56T/dw". (5.4)

The minus signs appear because the derivatives of Grassmann variables are
defined to be left derivatives. The sources of the composite fields are constant
parameters under this Legendre transformation and we have

8I/SK= —8W/SK,  8I'/SL= —sW/5L,
ST /6M= —8W/8M, &I /SN= —8W/6N,
8T /8U= —8W/8U, oI /5V = —5W/8V. (5.5)

Before using BRS invariance to prove renormalizability, we shall establish a
property of the effective action which greatly simplifies this task. It is possible to
solve the equations of motion and determine the complete dependence of the
effective action I' on the six fields A, C*, ¢, ¢*,  and w*.

Theorem 5.1. 'The effective action is of the form

r=S+r,A4,C,L,K',M',N',U", V"), (5.6)
where S is given in eq. (4.2), and the primed variables are defined by

K'=K+dC*—g(U+do™) Xp —go* X V. (5.7

M =M-d¢p*, N’'=N +dw,

U'=U+dw*, V'=V-de. (5.8)



D. Zwanziger / Renormalizability of the critical limit 487

Remark 1. The solvability is a particular property of the dynamics of these
fields, and does not follow simply because we have introduced a plethora of
sources. Indeed, if a source is also introduced for DC* and its BRS transform, the
equations are no longer solvable. Theorem 5.1 shows that the introduction of the
sources for the composite fields does not complicate the dynamics, but is a natural
structure.

Remark 2. We have introduced a local source M,,; for D, ¢;=0d,¢, +84, X ¢,
However the only change in I', as compared to a source M,; for g4, X ¢, is
simply the additive term (M, d¢), and similarly for the other ghost fields. For let
t* be an independent source for ¢, so that, with suppression of other fields,

exp W(p*, t*) =fd<P exp[—S + (p*, ¢) + (1%, )],

and we have oW /dp* = W /3t *. Now make the Legendre transformation from p*
to ¢ at fixed ¢*,

[(g, 1*) = (p*, @) — W(p*, t*).

This gives al(ep, t*)/dt* = —aW(p*, t*)/0t* = —oW(p*, t*)/dp* = —¢, and
we have

I'(p, t*)=T(¢) —(t*, ¢),

where I'; is independent of ¢*. Upon setting t* =3+ M, we obtain the relation
between the effective action I'(¢) with source term (M, D), and the effective
action I'|(¢) with source term (M, gA X ¢),

I'(¢) =Ty(¢) + (M, ip).

The term (M, d¢) is contained in S. Therefore the derivatives of T, qu With respect
to M give insertions of g4 X ¢. Of course this is just an illustration of the fact that
I' is the generator of one-particle irreducible correlation functions.

Remark 3. The appearance of the derivative of the ghost fields in egs. (5.8),
but not the ghost fields themselves makes manifest the factorization of incoming
and outgoing ghost momenta from all proper (C-ghost conserving) diagrams, which
is a well-known property of the Landau gauge [7]. (The appearance in K’ of the
undifferentiated ghost fields comes entirely from the C-ghost-increasing vertex).
This reduces the degree of divergence of diagrams, and is presumably the reward
for the optimal gauge-fixing described in sect. 2, whereby the fluctuations of the
A-field are minimized. In particular, the ghost-ghost-gluon vertex is finite (after
insertion of divergent subdiagrams), and the corresponding renormalization con-
stant may be set to unity Z; = 1. For by virtue of the theorem we have

8T /8¢*(x)8¢p(y)8A(z) =0"-97 -8 /8M(x)8V(y)8A(z).
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By remark 2, the last expression represents insertions of g4 X ¢(x), g4 X ¢*(y)
and A(z).

The remainder of this section is devoted to the proof of theorem 5.1. For the
field A we have

0=[d® /50 exp(~3), 0= [dd(d-A+1) exp(-3),

0=(9-8/80+1)Z, 0=4d-6W/8J+1.
This gives
8r/6A = —a-A, (5.9)
which has the solution

I'=—(A,9-A)+T,, (5.10)

where I'| is independent of A.
For the field C*, we have

0=fd¢ 8/86C* exp(—3), 0=fd<15(—3-DC+1;) exp(—3),

0=(-9-8/6K+n)Z, 0= —-0-8W/86K+n.
This gives
dr/8C* = —-9-8I'/8K, (5.11)
which has the solution
I'=sr(K+aC%), (5.12)
giving the complete C* dependence. From eq. (5.10), we get
I'=s —~(M,0-A)Y+T(K+aCH). (5.13)

For the field ¢*, we have
0=[d<1> 8/8¢* exp(—3), 0=/dd>(a-D<p +p—D(A)-V) exp(—-3),

0=(0-86/6M+p—D(8/8J)-V)Z, 0=0-6W/8M+p—D(6W/8]) V.
This gives
8I/8¢*=0-8I'/6M+D(A) -V, (5.14)
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which has the solution
I'= —(De*, V) +T,(M—0d¢*), (5.15)
giving the complete dependence on ¢*. From eq. (5.13), we get
I'=s —(A,0-A) —(De*, V) + I (M—0¢*, K+3C*). (5.16)

For the ¢-field, we have
0= [d® 8/5¢ exp(~3)
=jd<p(D-a<p*+p*+gaw*x(DC) —D(A)-M+gUxDC) exp(-3)

=qu>[a-(1)¢* +gDC X w*) — (3-gA) X ¢* + p* —gw* xd- (DC)
—D(A)-M+gUXDC] exp(-3)
=fd<D[6-(sDw*) ~g(8/8) —1) X o* + p* + gw* X (8/5C* — ) —D(A) -M

+gU X 8/8K] exp(—3).
The exact derivatives integrate to zero, and we obtain
0=(0-8/8V+glx8/8p+p*+gnx8/8c—D(8/8]) M
+gU X 8/0K)Z
0=0-6W/8V+glxX8W/8p +p*+gn X8W/8c—D(8W/8]) M
+gU X 8W /6K
8I'/8¢ =0-0I'/8V +go* X8I /6A +g8I'/8C* X w™* +gU X 8I'/8K + D(A) - M.
(5.17)
From 6I'/8A = —3- A, this gives, for the complete ¢-dependence,

I'=—(¢*,(0-g4) X¢) — (M, Do) +I',(V—-9¢, K-gUX ¢, C* —gu* X¢p).
(5.18)
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We set
I(V—-0d¢p, K—gUXgq, C*—gw* X¢)
=(Do*, 00 —-V)+Iy(V—-0¢, K-gUXep, C*—gw* X ),

where I is a new arbitrary function, and obtain the alternate expression for the
complete ¢-dependence

I'=(0¢*~M, Do) — (Do*, V) +Iy(V—0p, K-gUX¢, C* —gw* Xgp).
(5.19)
Upon comparison with eq. (5.16), we obtain
I'=~(A,0-A) + (dp™* =M, Do) — (De*, V)
+Iy(V—dp, M—dp*, K—gUX@+d(C*—gw* X¢)), (5.20)

which gives the complete A, C*, ¢ and ¢* dependence. Because [ is a generic
function of its arguments, this may also be expressed as

I'= —(A,9-A)+ (0™ ~-M, Do) — (Do*, V)
+ I, (V—-0p, M—d¢p*, K—g(U+dw™) X +dC* -gw* X V), (521)

where I, is another generic function of its arguments.
For the o* field, we have

0=]dcp 8/8w* exp(—3),

0= [d®[-d-(sD¢) + o~ D N+gDC X V] exp(~3),

0=[-9-86/8U+0—D(8/8])-N—gVx8/86K]Z,
0=—-0:-8W/8U+o0—D(6W/8J])-N—gVxsW/K.
This gives
8I'/6w* = —d-86I/8U ~ gV X 8I'/8K+ D(A) N, (5.22)
which has the solution for the complete w™® dependence

= —(Dw*, N) +I'{(U+0dw*, K—go* X V). (5.23)
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By comparison with eq. (5.21), we get
= —(A, 8- A) + (9p* — M, Dp) ~ (De*, V) - (Dw*, N)
+To(V—0p, M—d¢p*, U+dw*, K'). (5.24)
where K’ is defined in eq. (5.7). We set
I'y(V—-8¢, M—93¢*, U+dw*, K')= —(U +do*, Do)
+To(V—-d¢p, M—3¢p*, U+dw*, K'),

where I'j, is a new generic function, and obtain
F=—(x,3-A)+ (3¢* =M, Do) — (D¢*, V) —(Do*, N) — (U +dw*, Do)

+Tyy(V— g, M—dp*, U+dw*, K'). (5.25)

For the w-field, we have

0= fd(D 8/8w exp(—2)
0= [d®(Dd0* —o*+D(A) U) exp(~3)
0= [dP(9-Dw* —gd-AXw* —o*+D(A) U) exp(~%)

0= [d®[a-Dw* —g(8/81 1) X 0* —0* + D(A) U] exp(~3)

0=[-0-8/0N—glxX8/80—0a*+D(6/8])-U\|Z
0= —9-8W/8N —glx8W /80 —a*+D(8W/8]) U,
where the integral of an exact derivative was set to zero. This gives
8I'/8w= —03-8' /8N —g8I'/6A Xw* —D(A) - U, (5.26)
which, with 81" /8\ = —a- A, has the solution
I'=(w*, g0-AXw)— (U, Do) +I'{(N +iw), (5.27)
giving the complete w-dependence. We set

I''(N+dw)= —(Do*, N+dw) +I',(N +dw),
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where I'), is a new generic function, and obtain the alternate expression for the
complete w dependence,

I'= —(d0*+U, Dw) — (Dw*, N) +',(N +dw). (5.28)
By comparison with eq. (5.25), we get
I'= —(A,3-A) + (d¢* —M, Do) — (30* + U, Dw) — (De*, V) — (Dw*, N)
+ I (V—-3d¢p, M—3¢*, N+dw, U+dw*, K'). (5.29)
Finally, we set
I'p(V—0p, M—d¢*, N+dw, U+dw*, K')
=Sy~ (K', DC) — (L, —g/2C X C)
+ T (V =3¢, M—3¢*, N +dw, U+dw*, K'), (5.30)

and the theorem follows.

6. BRS identities for the effective action

We next derive the BRS identity for the effective action by standard procedures.
We have from egs. (4.2) and (5.2)

0= [d® s exp(—%)

= [dP[(M, sDg) + (sDw*, N) +(J, s4) = (1%, sC) + (A, 1) + (p*, @)

+(¢*, 0)] exp(—2)
= [(M, 8/8U) +(8/8V, N) + (], 3/8K) — (n*, 8/8L) + (8/81, n)
+(p*, 8/80%) +(5/0p, 0)]Z
0= (M, sW/sU) + (8W/8V, N) + (I, SW/8K) — (n*, 8W/8L) + (W /sl, m)

+(p*, 8W/Bc*) + (8W/bp, o).
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This gives the desired identity satisfied by I,
(8I'/8A, 8I'/8K) + (8I'/8C, 8T’ /8L) — (A, 8I'/8C*) — (8T /6¢, w)
~(¢*, 0I'/éw™) + (M, 8T'/8U) + (8I'/8V, N) =0. (6.1)
This identity is geometrical in nature in the sense that the coupling constant g

nowhere appears in it. Moreover it is satisfied order by order as a power series in
g. In particular it is satisfied at order g° for which I'= S, so the identity is satisfied

by § itself, as may be verified by explicit calculation. We write I'=S§ + I, and it
follows that I, satisfies
ér,,/84, I, /8K + (8T,,/8C, 8T, /8L) + ol,, =0, (6.2)

where
o= (6S/8K,58/8A)+(8S/8A4,6/8K) + (8S/8L, 8/8C) +(8S/8C, 8/8L)
—(A, 6/8C*) —(w, 8/8¢) — (¢*, 8/00w*) + (M, 8/8U) + (N, 6/8V).

(6.3)

The fact that identity (6.1) is satisfied by S implies that ¢ is a nilpotent operator,
0% =0. (To see this, note that identity (6.1) which is satisfied by § is of the form

dS/3x,08 /0, + ;0S8 /Ay, + 2,85 /3, =0, (6.4)

where x, y and z and £, n, and { are three sets of Bose and Fermi variables, and
that o is the differential operator

o0=088/08£,0/0x;+ 38 /0x,0/3&,+n8/3y, + 2,0/9;. (6.5)

It is easy to verify by standard arguments [6,7], that eq. (6.4) is a sufficient
condition for ¢ to be nilpotent.)

In sect. 5 we showed that I, depends on the six fields A, C*, ¢, ¢*, w, and w*
only through the dependence of the primed variables, defined in egs. (5.7) and
(5.8), on these fields. It is natural to express the BRS identity in terms of the
primed or “reduced” set of variables. For this purpose it is helpful to introduce the
action

—8'= —Syq+(K', DC) + (L, —g/2CXC) —(M', V') + (U', N}, (6.6)

which depends on the same variables as I’ qu namely, §'=§ "(A,C,K', L, M', N',
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U’, V'). We also define a BRS operator o’ in terms of the reduced set of variables
by analogy with eq. (6.3),

o'=(88'/8K', 8/8A4) + (55’ /84, 8/3K") + (85" /5L, 6/5C)
+(88"/8C, 8/8L) +(M', 8/8U") + (N', 8/6V"). (6.7)
One may verify that the BRS identity, eq. (6.2), satisfied by I';, may be written
(8T, /8A, 8T, /8K') + (8T,,/5C, 8T, /8L) +a'T,=0.  (6.8)

Because there is no coupling in the action §’ between the sources M’, N’, U’ and
V' and the other variables, the solution to this equation, which determines
possible divergences, has a trivial dependence on these variables.

7. Renormalizability

Feynman rules for calculation with the action (3.9) or (5.2) are easily derived,
and we shall not trouble to give them explicitly. They are slightly different from the
ones given explicitly in refs. [2,3], where f was assumed even, and f real Bose
ghosts and f/2 pairs of Fermi ghosts were introduced. In particular, for the action
(3.9), in addition to the A—¢ and A—¢* propagators, there are non-zero ¢—¢ and
¢*-p* propagators. Nevertheless power counting gives the same primitive diver-
gences as found in refs. [2,3].

Power counting in Feynman integrals fixes the dimensions to be assigned to the
fields. These remain to some extent arbitrary because of conservation laws which
follow from the U(1) X U(f) symmetry of S,, and the arbitrariness may be fixed by
convention. The dimension of the propagators gives the following conditions on
the dimensions of the fields

[A]=[e]l=[e*]=1, [A]=2 (7.1)
[0] +[e*]=[C]+[C*]=2. (7.2)

A symmetric and traditional assignment, that would give dimension 1 to all ghost
fields, would give dimension 5 to the C-ghost increasing vertex, the last term of S,
eq. (3.5), which would suggest that this vertex is not renormalizable. However, such
an assignment ignores the reduction in the degree of divergence implied by
theorem 5.1. The C-ghost increasing term is in fact safely contained in the term
(K’, DC) of §’, eq. (6.6), and its renormalization is assured. As a result of this
reduction of divergence, dimension 4 is also assigned to the C-ghost increasing
vertex, and this provides the condition

[0*]+[C]=1. (7.3)
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It is convenient to fix the remaining arbitrariness in dimensions of the elementary
fields by requiring that the BRS operator s does not change dimension. [This
implies incidentally that s commutes with the generator of dilatations (see sect. 9).]
Then from egs. (3.2) and (7.1) we obtain

[e]=[e*]=1,
[C]1=0, [C*]=2. (7.4)

These dimensions also imply conditions (7.2) and (7.3). The dimensions of the
composite fields are then fixed,

[K]=3, [M]=[N]=[U]=[V]=2. (7.5)

Feynman integrals may be evaluated by dimensional regularization. As usual the
coupling constant g is replaced by gu®~%/2, where u plays the role of renormal-
ization mass.

We now discuss the recursive construction of counter terms which cancel the
divergences, following the approach of ref. [7], pp. 599 to 604. This will be done in
two steps. In the first step we shall establish renormalizability in terms of the
reduced set of fields introduced in sect. 5. In the second step we shall establish
renormalizability in terms of the original set of fields.

At loop order I, the divergent piece, I'},, is a local function of the reduced set
of fields and sources of dimension 4 that satisfies

o'Th =0. (7.6)

By conservation of ghost number and U(f) invariance, the dependence of Iy, on
the sources M', N’, U’ and V' is of the form c(M’, V') +¢(U’, N'), where ¢,
and cs are constants. The last equation implies that I}, is of the form

Fdliv=F<{iV,FP+c4[(M,7V’)_(U,’ N")] (7.7)
=Fdliv,FP+0"C4(U’5 V’); (78)

where I dIiV,FP satisfies eq. (7.6), but depends only on the fields that appear in
Faddeev-Popov theory. According to standard arguments [7], it follows from eq.
(7.6) that I}, is of the form

Fdliv =c¢1Sym +C2[(SSYM/8A’ A) + (K, ‘9C)]
+¢;3[(L, —38C X C) + (K', DC)| + ¢, [(M', V') = (U, N")],
which may be written

If,=cSym+a'[ca(K', A) +¢5(L, C) +c, (U, V")]. (7.9)
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The ghost—ghost—gluon vertex is finite in the Landau gauge [7], as is shown
explicitly by remark 3 of sect. 5, so
c;=0. (7.10)

This is equivalent to the well-known result in the Landau gauge Z; = 1. Moreover,
as was noted above, apart from correlation functions which contain the C-ghost
increasing vertex, the ghost diagrams for the various ghost fields both bose and
fermi are equal. It follows that

4= —C,. (7.11)
We thus obtain
Iy =ciSym + ¢o[(8Sym/84, A) +(K', 0C)] - [(M', V') = (U’, N')]
=c,Symt+ 0’ [(K', A)— (U, V)]. (7.12)

Here the standard solution to the cohomology problem is exhibited, namely a
multiple of Sy,, plus an exact form.

We must show that these divergent terms may be cancelled by a renormalization
of the charge and the reduced set of fields that appear in §’, eq. (6.6),

A=2Z,A, K =ZwK!, C=2Z.C, L=2ZL,,
M =2,M, V'=2,V', N=2Z,N U'=2Z,U,
g§=27,8,. (7.13)

The renormalization constants Z; are determined recursively, and in loop order /
are of the form Z; =1+ 6Z.. By comparison with eq. (6.6), we obtain for the
cancellation of the divergent terms at loop order /, the conditions

8ZL, + 62, =62, + 62, =624 +6ZL=c,, (7.14)
8Zy +8ZL+8Z +0Z=8Z] +8Z,+28Z(=0. (7.15)

To obtain the remaining conditions, we write Svy = Syyu(A4, g), which gives to
first order

Sym|(1+38Z4)A, (1+62%)g] = Syu(A, &)
+8ZY (A, 8Sym/BA) +0Z,gdS /8.

1

Moreover, Syy(A, g) is of degree 2 in 4 and g~' which means
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This gives
8Sym = —28Z;Syy + (8Z +8Z})(A, 8Sym/84),

and we obtain the additional conditions for cancellation of the divergences at loop
order /,

28Z,=c,, 8ZL+8Z.= —c,, (7.16)
These equations imply the exact relations among the renormalization constants,
-1
ZM'ZV'=ZN'ZU'=ZK'ZC= (ZAZg) ) (7.17)
ZK,ZgZAZC=ZLZgZC2=1, (7.18)

which are consistent with each other.
This establishes renormalizability of the effective action I'" defined by

I'=S"+T,, (7.19)

and which depends on the reduced set of variables. To be explicit, we have shown
that with the renormalization constants chosen recursively as described above,
I/ (X,), which is defined by

LX) =T"(X) (7.20)

is a finite function of its arguments. Here X represents the reduced set of
unrenormalized fields and the coupling constant, and similarly for X_. This
completes step one. ‘

We next verify that relations (5.7) and (5.8) among the original unreduced set of
variables may be maintained for the renormalized variables. They are satisfied if
we define the renormalization constants

Zy=Zy=2Zy, Zy=2,=2y, Zy=Z,=2Zy, Zy=2Z, =2y,
Zex=Zyg=Zyg, (7.21)
and provided that the new condition
2,2 Z,=2g (7.22)

holds. These equations imply the relation between the renormalization constants
of the elementary fields,

ZwZ,=Z w2, =ZexZe=(242,) ", (7.23)

Z,ZwZy=Zcn. (7.24)
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Because of the arbitrariness in the renormalization due to conservation laws, we
are free to impose

Z‘P* =Z«p’ Zm*=Zw’ (725)

which gives
Zy=Z,=Z,=2,=25", (7.26)
Zorleo=23, (7.27)

where we have introduced the standard notation for the ghost field renormaliza-
tion constant. Upon multiplication of eq. (7.24) by Z., we obtain

Z,Z,=1, (7.28)
or
gC=g.C,. (7.29)

Geometrically this means that the infinitesimal local gauge transformations gener-
ated by gC are not renormalized. From eq. (7.18) we obtain also

ZyZ,=2,Z.=1. (7.30)
And finally, from eq. (7.23), we obtain
z,=(zy%z3)", (7.31)
where we have introduced the conventional notation
ZVi=7,. (7.32)

Eq. (7.31) is standard in the Landau gauge where Z| = 1.

To complete the proof we shall establish renormalizability of the effective
action I', expressed as a function of the original variables. The original action §,
defined in eq. (4.2), may be written

S=8"+S,~-[(M,V)- (U, N)], (7.33)

where S, is defined in eq. (6.6) and depends only on the reduced set of variables,
and S, is defined by

—S,=(M', gA X))+ (gAXo*, V) +(U', gA Xw) + (gA X 0*, N). (7.34)

Observe that §;, is invariant under renormalization,

Sin( X1) = Sin(X), (7.35)
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which is a consequence of the Landau gauge formula Z, = (Z}/?Z})~". It follows
that

(X)) =I"(X)+85,(X)=T(X)+[(M, V) - (U,N)]  (736)

is a finite function of its arguments. The term [(M, V) — (U, N)], which depends
only on the sources, must be added to the original effective action I' to obtain a
quantity which is made finite by the multiplicative renormalization of charge and
fields. This is a typical occurrence, when sources for composite fields are present
[6]. This completes the proof of renormalizability of the theory with local sources
for composite fields of lower dimension.

8. Renormalization of the horizon condition

In this section we shall show that the horizon condition gives a finite equation
when expressed in terms of renormalized quantities. In a translation-invariant
theory the expectation value of the derivative of a field vanishes. Consequently the
horizon condition, eq. (2.12), may be written in terms of the physical sources, egs.
(4.3) and (4.4), as

<Dﬂac¢uac>=5W/SMMuaa|ph = —SF/‘sMu#aalph = Vph,mwa’ (8.1)
(sD““Cw*MC>=8W/8VLW”‘ph = —8F/Sl/uwa|ph = Mph,uuaa' (8.2)

This may be written,

8[T+(M,V)— (U, N)|/8M,,.°| . =0,

wa lph

8T+ (M, V) — (U, N)]/8V,, 2| . =0.

’|
©a iph

A striking simplicity now appears. For upon comparison with eq. (7.36), one
recognizes that the quantity in square brackets equals the renormalized effective
action. So the horizon condition in terms of renormalized quantities is not only
finite, but is given by the simple homogencous equations

pna|on =0 (8.3)

Remarkably, any other constant on the right hand side of the horizon condition
(1.1) would not give a finite renormalized horizon condition, and thus would not
correspond to a critical point.

We next give the physical values of the renormalized sources. From eq. (4.3) we
have

8I,/8M,,,.°|,, =8I,/8V,

rupa

—1,2 -1,2
Mr,ph,u.vba(x) = _I/r,ph,uvba(x) =Z; / Mph,;wba(x) =-Z; / Vph,y.vba(x)

— Zé—l/z,yl/Zg—-ls’waa — Z31/ZZ3’1/2'y1/2g,_18‘“,6,,“. (84)
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Let a renormalized Boltzmann constant be defined by
yr1/2 - Z31/2Z§1/2y1/2. (8.5)
Then the physical values of the renormalized sources are
M, ohoos (X) = =V, s’ (%) = v.'%8,” 18[1,1/8[)“’ (8.6)

The physical value of all other sources is zero. Thus if v,, which has dimensions of
(mass)*, is given a finite value in physical units, then the renormalized horizon
condition, which is a finite equation in terms of the renormalized quantities,
determines a finite value for g,.

In the method of local sources, the renormalization constants have the same
value as in standard Faddeev—Popov theory. (Different normalization conventions
were used in [3].) It follows that g, satisfies the standard renormalization group
equation,

g, /ou =B(8:) =bog,’ +bg’ + ... (8.7)
From eq. (8.5) we obtain the corresponding renormalization group equation for
YATES
1oy, 2 fop = a(g,)y,"?, (8.8)
where
a(g,) = (3)nd[In(Z,Z3)] fou = agg’ +ag' + ... (8.9)

and the coefficients are finite. The renormalization group equation for g, has the
familiar solution

g =8&(Aqcn/1), (8.10)

where Agcp is a constant of integration. This equation may be inverted to give

Aqcp = 1f(&:)- (8.11)

If we change independent variable from u to g,, the renormalization-group
equation for vy, takes the form

B(8.)3v' /38, = a(8,)¥,/* (8.12)

This gives

a(In v,7%) /3, = [B(8.)] ' a(g:) =bo'aoe, ™' + O(g.), (8.13)
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which we write in the form

3|in(v," /)] /08, = h(g,) = [B(8)] ' a(g,) —bo 'a0g. '] = O(g,), (8.14)
where
c=ay/b,. (8.15)

This has the solution

243
¥,1/2 = (Agep)’ 8¢ exp[fo dg h(g)], (8.16)

where AGcp is a new constant of integration with dimensions of mass, which is
moreover a renormalization-group invariant.

The horizon condition determines g, =g (y,). Moreover it is compatible with
the renormalization-group equations because it is obtained, as we have shown
above, by renormalization of the unrenormalized horizon condition which is
renormalization-group invariant. This means that we may replace g, and v, in the
equation g, =g (v,) by their expressions in eq. (8.10) and (8.16) and obtain a
consistent equation for Agcp in terms of Agcp. On dimensional grounds it can
only be of the form

Agep = ¢Agen s (8.17)

where ¢ is a pure number which is determined by the horizon condition.

We shall not trouble to write the homogeneous renormalization-group equa-
tions for the correlation functions which are the exact analog of eq. (8.73) of sect.
8.10 of ref. [6].

9. Energy-momentum tensor and gluon condensate

The dimensionful parameter y!/? in the action breaks dilatation invariance at
the tree level. We shall derive the energy—momentum tensor and identify the
gluon condensate.

We use dimensional regularization, and consequently we require the dimensions
of the fields in generic euclidean dimension D. The formulas in sect. 7 for D=4
generalize to

(4] =[e]=[¢*]=(D-2)/2, [A]=D/2, CRY

[0]+[w*]=[C]+[C*]=(D-2). (9.2)
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The dimension of g is fixed by the condition that the classical connection has
dimensions of inverse length, so [g4] = 1, which gives

[g]=(4-D)/2=¢/2. (9.3)
From the C-ghost increasing vertex, we obtain
[w*]=[C]=D-3. 94

We again fix the remaining arbitrariness in dimensions by imposing that the BRS
operator leaves dimensions invariant. This gives

[0]=[w*]=(D-2)/2, (95)
[Cl=(D-4)/2=—€/2, [C*]=D/2. (9.6)

These dimensions also imply conditions (9.2) and (9.4), and give [gC]=0 in all
dimensions. The dimension of vy is unchanged,

[y/?] =2. (9.7)
We shall derive a Ward identity by the change of variable 8]
D, - P =P, +w[n]P, (9.8)

in the partition function
z=[dq> exp[ S + (J;, ®,)]. (9.9)

Here the field ®; represents all the elementary fields, with sources J;, and we
collectively denote the dimensions of the elementary fields by
D;=[2,]. (9.10)
The action S is defined by
S=Sm~ [d°x fy/e, (9.11)
where S, is given in eq. (3.9b). The last term here is the last term of eq. (7.36)

with the external sources set equal to their physical value. Finally w[7] in eqg. (9.8)
represents the infinitesimal generator

wlnl= [dPx n*(x){9,9,8/8®, ~ D™'D3,(®;8/5%)

+30,(%;,,9:8/89,)}, (9.12)

uv i
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where 1*(x) is an arbitrary infinitesimal vector function, 33, ,, = — 33, is the

generator of spin transformations for the field @,, and a sum over i is implicit. The
generator wln] has the property that for n*(x) of the special form

n*(x) =p* +ox* + x5, (9.13a)

where p*, o and 7#* are infinitesimal and x-independent, with 7** = —7#* w[q]
generates an infinitesimal translation, dilatation and (euclidean) Lorentz transfor-
mation, namely

wln]®, = p*3, D, + o (x*9, + D) D, + 37**(x,8, —x,9, + 2;,,)P;, (9.13b)

as is easily verified.
The change of variable (9.8) is linecar in @ so the jacobian is a constant, and we
have

O=fd<1>[—wS+(w<Di, I)] exp[ =S + (®;, )] (9.14)
To obtain the Ward identity we evaluate

wS = dex wd,(x)8S/8P,(x)

= f dPx n#{0,8,68 /6%, —3,(D™'D,; 9,88 /6®,) + 10,(3, ., P,08/5%;)}.

[N'2Y
Because S is the integral of a local density L, we have
8S/6®,=3L/3®,— 3,(3L /30,®,),
which gives
wS= [dPx n#{-0(9,93L/30,®,) +3,L

-3, -9,(D™'D,®,0L /33,®,) + L ~ D~ 'aL — D™ '9,$,0L /35,&,]

+30,[ =0.( 2, W PIL/30D,) — (8,,0,8; — 8,,9,®,)0L/30.D,]}. (9.15)
Here we have used the fact that L has no explicit x-dependence, so

3,L =03,®3L /0P, +3,0,8,0L /09,;,
that L is a Lorentz scalar, so
0=23; \DOL/OD,+ (2, ,,0D; +5,,0,P;,—8,,8,8,)0L /3P,

A i,uA K
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and that L has engineering dimension D, so
DL = D;® 3L /o®; + (D; + 1)8,D,3L /39,P; + a L. (9.16)
Here « is the operator,
a=2y"2%/0y"? + (e/2)8d /g, (9.17a)

so aL is the contribution to the engineering dimension of L that comes from the
dimensionful coupling constants. In euclidean dimension D, it is customary to
make the substitution

g u’’g,
where g is now a dimensionless coupling constant, so « takes the form
a=2vyY%3 /3y + ud /ou =a,ta,. (9.17b)

The term ud/dp gives an anomalous contribution to the generator of dilatations,
in the sense that it does not appear at tree level for D =4, but the term
29129 /3y'/? does. From eq. (9.15) we obtain

wS = f dPx n* (=8, ~ 03 Rer)s (9.18)
where
T,, = 3(3,®0L /38,®, + 8, DL /93,®,) — 8,,D~ ' (4P,0L /30D, + aL), (9.19)
and

R, =133, 2 P0L /30D, —8,,D'D,DIL/33,D,. (9.20)

KA

The energy-momentum tensor 7,,, obtained here without the use of the equa-
tions of motion, is symmetric, and its trace

T,, = —alL (9.21)

would vanish in the absence of dimensionful coupling constants.
Because n*(x) is an arbitrary infinitesimal function, eq. (9.14) gives the local
Ward identity,

—Z(ZJ')‘TML +33.R\,)

=08(8Z/81,)J,— D" 'D3,(8Z/8JJ)) + 38,(2, ,,0Z/81.]). (9:22)

ipv
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The right-hand side renormalizes since it merely effects the same linear transfor-
mation on the renormalized and unrenormalized fields, which shows that insertion
of the field 9,7, , +9,d,R,,, sives finite correlation functions.

We shall not attempt to “improve” the energy-momentum tensor by adding an
exact derivative, nor to obtain explicit renormalized formulas for the energy-
momentum tensor such as is available for /\(p4 theory [8]. Instead we shall exhibit
the integrated Ward identity for dilatations which is insensative to such a change.
We contract eq. (9.22) with x*, and integrate. The term with 8,9 R gives no
contribution, and we obtain

KAQ

dex Z(T,,) = — /de Z(aL) = [dPx(x#d, + D,)(8Z/81;)J,. (9.23)

Thus a global dilatation is obtained by insertion of —aS, which is minus the
contribution to the dimension of the action which comes from the dimensionful
coupling constants.

The expectation value

(T,,) ={a,L) +{a,L) (9.24)

is also insensitive to the addition of an exact derivative to 7, ,. This quantity is a
natural candidate for the gluon condensate which has been introduced with
success in hadron phenomenology [9]. From the action (9.11), we obtain

a,L=2y"?A%(¢ —o*); ~ 4fy /g%, (9.25)
and the horizon condition (2.12) gives
(a, L) =0. (9.26)

So this term does not contribute to the gluon condensate nor to the cosmological
constant, even though o L is expected to be important in generating dilatations.
We are left with

(T,,> ={a,L). (9.27)

This guantity contains an explicit factor of e =4 — D, as one sees from eq. (9.17).
Therefore it is quite likely to be finite, when evaluated by dimensional regulariza-
tion and continued analytically to D = 4, and expressed in terms of the mass scale
Agep which appears in eq. (8.16). (A similar proposal appears in ref. [4).) If so, a
direct link will have been established between hadron phenomenology [9] and the
global properties of the fundamental modular region.
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10. Dipole ghost

In this section we will show that the propagator of the Fermi ghosts has a
1/(g*)? singularity at g = 0.
The horizon condition, eq. (8.2), reads

Z7! [d® exp(—S)sD,“w*,, = M,,,° (10.1)

ppa >
where d@ represents integration over all fields, and the sources are assigned their

physical values. Because the BRS operator s is a derivative, we have by partial
integration

27 [d® (s8) exp(~S) D, w*,. =M, .°. (10.2)
With 58 = — (M, sD¢), this gives
((M, sD@)D,*w*,(x))+M,,,*(x)=0. (10.3)
We evaluate this quantity by choosing for the local source
M, (x)=v"%¢""5,,8,° exp(iqx). (10.4)

The limit g — 0, by which M approaches its physical value, will be taken at the
end. It is convenient to define the propagator of composite fields

G, 25 (q) = [dPx exp(—ig-x){(D,0*)"(x)s(D.#;) (0))

= [ dPx exp(—iq-x)8*W/8Uf(0)8N, (), (10.5)

where, as we recall from sect. 2, the index i represents the pair i = (v, b), and
similarly for j. In terms of GU¥, the horizon condition takes the form
-G e.l(g)+f=0. (10.6)

riLd KC

We next derive some properties of GYV. We have

((D.0*) (x)5(De#)) (0)) = (D, 0*) () (Dew)) (0)).  (10.7)

Moreover, at every vertex on the « line which is continuous across every graph,
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there is a 8-function on the i —j indices, which comes from U( f) invariance. Thus
GYV is of the form

GUNp.iach(q) = 61-145“%‘“(((]), (108)
where A,,(q) is an invariant Lorentz tensor.

We next use the equations of motion to determine the longitudinal part of GYV.
We have

q,G", (@) = —i [dPx exp(—ig ) ((9- Dw*)* (x)(D,w;) (0))

= —i[de exp(—iq~x)Z_1fd<I>
x8[exp(—8)] /8w (x)(Dew;) (0)

~i[dPx exp(~iq-x)Z"! [do exp( —8)8[(D,w;) (0)] /8w (1),

which gives

qAGUN#iach(q) - aijaacqua
and so
GUN”I-“K]-C(Q) = GUN,T a c(q) + aijsacquqv/qZ’ (109)

pi kj

where GUNT ¢ <(q) is the part of GUV which is transverse on the u and «x

indices. With f=(N?2— 1)D, the horizon condition, eq. (10.6) reads
—GUN’T!LM“KKCC(q) + (Nz—l)(D— 1) =0. (10.10)

The crucial point in the evaluation of GUN'T is that only irreducible diagrams
contribute to it. For the only one-particle intermediate state is the w-line, and the
index i on the w-field is mute, so w is effectively a Lorentz scalar particle.
Therefore any reducible contribution to G, (q) is, for example, of the form

5,6°B,(a)(4%)"'C,(a) = 8,6"4,b(4*)(a%) " q,c(a?)

which is purely longitudinal on p and v. Call '’V the one-particle irreducible part
of the GYN propagator. It may be derived from the generating functional for
one-particle irreducible correlation functions, namely the effective action

TV, f7(a) = = [dPx exp(~ig - x)8°T /8U,(0)8N, (x), (10.11)
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(The minus sign is characteristic for sources of composite fields.) Eq. (10.8) gives
PO, ¢ (a) = 8,8 £(47)8,. + 8(47)4,4.] - (10.12)
From the horizon condition (10.10), we conclude
f(o)=1. (10.13)

We now use the equations of motion of w and w* to translate this into a
condition on the one-particle irreducible w-w* propagator defined by

rerese(q) = [dPx exp[ —ig - (x —y)|8°T /3w (x)8w*f(y). (10.14)
From eq. (5.22), we have, with suppression of indices,
8T /dw, bw*, = =87 - 8°T /8w, 8U, — gV, X 8°I'/bw, 6K, .
The second term vanishes for physical values of the sources, and we have
8T /8w dw*,=03" - 8°T /83U, 8w,
=d¥-8/8U,[—0"-8I'/8N, +g(9 A, Xw,) —D*(A)U,],

where we have used the equation of motion (5.26). For physical values of the
sources, this gives

8T /8w, dw*, = —3"-378(x —y) +9*-9”-8I'* /6N, 8U,,
I“w*wiajc(q) = q26ij6ac - ququUNy.iaij(q)’ (1015)
whereby the factorization of both external ghost momenta is manifest. This gives

Fw*wiajc(q) — qZBUS“C[l _f(qZ) —-ng(qz)] .

Form the horizon condition f(0) = 1, just derived, and under the assumption that
f(g?) and g(g?) are regular functions of g2, we conclude that at g = 0, the inverse
propagator of the Fermi ghost is of order (g?)?,

reefs(q) = 8,;6°0(q?)". (10.16)

Remarkably, at g =0, the quantum corrections precisely cancel the tree-level
contribution to the inverse propagator of the Fermi ghost!
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The 1/(g?)? singularity of the Fermi ghost propagator at g = 0 shows that the
cluster property does not hold. This may mean that the vacuum is degenerate or
that the effective action I, has a stationary point 81, /6®, = 0, at ®_+# 0, where @,
represents the set of renormalized elementary fields.

11. Conclusion

The renormalizability which is established here argues strongly for the consis-
tency of the critical limit of lattice gauge theory given in eqgs. (1.1) and (2.1). It is
particularly striking that renormalizability of the horizon condition holds only for
the particular value {A) = f. Moreover, the dipole singularity of the Fermi ghost
propagator found in sect. 10 is a verification in detail of the hypotheses of ref. [3]
which lead to the critical limit, as we now explain.

The vanishing of the leading term in Fi“’*“’“jc(q) at ¢ =0, found in sect. 10,
means that if the value f which appears the horizon condition (k) =f were any
larger, then this propagator would go negative. If that happened, it would indicate
that contributions from configurations outside the Gribov horizon dominate this
quantity. The fact that it is on the verge of going negative suggests that configura-
tions just at the horizon dominate the functional integral. This might seem
surprising. For recall that the propagator of Fermi ghosts is the inverse of the
Faddeev-Popov operator M, which is positive inside the Gribov horizon, so the
Boltzmann factor exp(—+yH) which appears in the partition function vanishes
exponentially as the horizon is approached. (In a perturbative expansion, the
horizon is always approached from the interior.) Thus one might expect the system
to be strongly contained within the horizon. However, the possibility that configu-
rations on the horizon dominate the functional integral is consistent with the
hypothesis of ref. {3] that at large euclidean volume ¥, the probability distribution
P(e) of the horizon function per unit volume A(x) is in fact concentrated just at
the horizon. More precisely, it was proposed that at large V, P(e) is of the form

P(e) =exp[Vs(e)], 0<e<f, (11.1)

where s(e) has the properties of entropy in classical statistical mechanics, namely
s'(e) >0 and s"(e) <0, which express positivity of the temperature and heat
capacity respectively. In this case s(e) has its maximum at the end point of the
interval, namely at e = f, and as the volume V' grows without limit, the support of
the probability distribution P(e) approaches the horizon. The Boltzmann factor
exp(—yH) modifies the distribution to

P(e) =exp{V[s(e) —vel]}, 0<e<f. (11.2)

If y is slightly larger than s'(f), then, at large V, the new distribution peaks
sharply just inside the horizon, because s(e) is monotonically increasing and s'(e)
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is monotonically decreasing. This condition is assured when vy is determined by the
horizon condition written in the form (4) = f — ¢, where € approaches zero. Thus
the singular behavior of the Fermi ghost propagator is consistent with the probabil-
ity distribution being located precisely at the horizon in the infinite-volume limit.

In fact, the dipole singularity of the Fermi ghost propagator suggests that a
particular part of the horizon dominates the functional integral. Consider the
expectation value

(W (x)o(x)) = (M7 (x, 5 4D = (T (2)(2) /),

where the eigenfunction expansion is at fixed A, and the average is the ensemble
average over A. By translation invariance we have

(o*(x)o(x)) = V_lfd“x((w*(x)w(x))) = V‘1<Z 1/A,,>.
With
(w*(x)w(y)) = (2m) " [dq explig - (x~»)] D(q),

this gives, in the infinite-volume limit

(277)_4fd4q D(q) =f0wd)t<p()t; A))/A =j0°°d,\ p(A) /A = oo,

where p(A; A) is the density of levels per unit volume of M(A4), in the infinite-
volume limit, and p(A) is its ensemble average. The integral diverges because D{(q)
has a 1/(g%)? singularity. Consequently the average density of levels p(A) cannot
vanish as fast as any positive power of A and we conclude that p(0)=1 (or
greater), to within logarithmic factors. This is in marked contrast to minus the
Laplace operator, for which the density of levels for positive A is given by
p(A) = const. X . Thus the configurations 4 which dominate the functional inte-
gral, not only lie on the Gribov horizon where an eigenvalue is about to go
negative, but are those with the property that there is a very strong accumulation
of levels at A = 0. This is consistent with the result in ref. [3]: “all horizons are one
horizon” by which is meant that for the relevant configurations, an infinite number
of eigenvalues go negative together. To be more explicit, in ref. [3], individual
eigenvalues A,(A4) of M(A) were tracked as A approaches the Gribov horizon.
The horizon is defined by A,(A)/A(0) = 0. [The rescaling by A,(0) is necessary to
compensate the trivial vanishing of any finite number of eigenvalues which is
present also for the Laplace operator in the limit V' — . There is also a trivial and
irrelevant eigenvalue Ay(A4)=0 for all 4, which corresponds to global gauge
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invariance.] It was found that in the limit V' — o, and for the relevant configura-
tions A, the condition A,(A4)/A,(0) =0 is satisfied simultaneously for all finite n
when it is satisfied for n = 1. It was hypothesized in ref. [3] that these special
points on the Gribov horizon, where “ali horizons are one horizon” also lie on the
boundary of the fundamental modular region, and moreover that the measure is
concentrated on this special part of the boundary. [The fundamental modular
region is the set of absolute minima of the minimizing function defined in sect. 2.
It is identified with the physical configuration space which is the quotient space
U/G. The fundamental modular region is known to be smaller than the Gribov
regions which is the set of relative minima. However, as shown by van Baal [10],
their boundaries have n-dimensional manifolds in common, for all integer n, which
lie on a single gauge orbit, and where the Faddeev-Popov operator has n
vanishing eigenvalues. We refer to refs. [3,10] for a discussion of this interesting
geometrical topic.] Thus the dipole singularity of the fermi ghost propagator is
consistent with the hypothesis that the measure is concentrated on that part of the
horizon where “all horizons are one horizon”.

[1t is interesting to compare the result p(0) = 1 for the average density of levels
of the Faddeev-Popov operator-d - D with the analogous property of the Dirac
operator y-D, when chiral symmetry is spontaneously broken, as indicated by a
non-zero value of the order parameter (¢ *i). We have

WH(2)(x)) =V [d*x(Tr(m +v-D)"'(x, x))

= V'lfd“x(m tr[mz— ('y-D)Z] _l(x, x)),

where the trace is over spinor indices. Upon expanding in terms of the eigenfunc-
tions of y - D with eigenvalue iA,, we obtain

W) = mb o S w2 (4 0,2) )

=mV—1<Z(m2 +/\n2)‘1> = mfd)\(o-(A; A)Y(m?+Am?) "

-1

=m[dr a(A)(m?+ %) = [da o(ma)(1+a?) ",

where o(A; A) is the average density of levels of the Dirac operator vy - D, and
o(A) is its ensemble average. In the chiral-invariant limit m — 0, this gives

(P*(x)y(x)) =ma(0) +0.
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Thus a non-zero value for the chiral symmetry breaking parameter means that the
average density of levels at A =0 of the Dirac operator o(0) is of order unity like
p(0).]

In a second-order calculation, Gribov [1] also found a 1/(g*)* singularity for
the Fermi ghost propagator. He pointed out that the corresponding constraints in
the Coulomb gauge would imply that the three-dimensional Faddeev-Popov
propagator behaves at small g like 1/(g%)* which corresponds to a linear increase
at large distances in position space. Moreover, in a non-abelian gauge theory, the
Coulomb potential is replaced by the Faddeev-Popov propagator, and Gribov
proposed this as a possible confinement mechanism. (More recently he has
considered alternative mechanisms [11].) This is not implausible. However, the
Coulomb gauge is not renormalizable, and it remains a challenge to demonstrate
that a confinement mechanism operates in the renormalizable gauge presented
here. The elements of a theory of confinement appear to be at hand, because the
gluon pole at £ = 0 is eliminated by the proximity of the Gribov horizon in infrared
directions [12], and because long-range forces are present, as indicated by the
1/(q?)? singularity.

A step in this direction would be to verify that the gluon condensate [9],
identified as the trace of the energy—momentum tensor, is likely to be finite and
calculable in the present scheme, as explained at the end of sect. 9. This would
directly relate hadron phenomenology to the horizon of the fundamental modular
region. Finally, we remark that the SU(2) gauge field of the electro-weak interac-
tions is also restricted by the horizon that bounds the fundamental modular region,
so the results obtained here are also relevant in that theory.
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Note added in proof

The BRS invariance of the Faddeev—Popov action may be used to prove not
only renormalizability, but also unitarity of the S-matrix. By contrast, in the
present article, BRS invariance of the modified action has been used to prove only
renormalizability. This is because the zero-order gluon propagator kZ(k?)?+
Ny]~!' has unphysical poles at k2= +i(Ny)?, corresponding to imaginary
(mass)?, so there are no consistent physical poles in any finite order of perturba-
tion theory. Moreover the exact asymptotic states of the theory are unknown.
Consequently nothing can be said at present about unitarity of the S-matrix. The
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resolution of this issue may have to wait for a solution of the confinement problem,
and the construction of physical hadronic states, both of which are beyond the
scope of the present article.
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